

HfO₂ – the swiss army knife of semiconductor devices

T. Mikolajick

NaMLab gGmbH

and

Chair of Nanoelectronics, TU Dresden

Introduction

Elements used in Silicon Semiconductor device fabrication over time

■ Till the 1980s only a very limited number of Elements were used in semiconductor fabrication

TECHNISCHE UNIVERSITÄT

- A wave of new materials was introduced since the 2000s
- The development is still going on with new material intros coming up continuously
- The technology base remains the same

Introduction

Thermal stability of HfO₂ on Silicon

Properties of different dielectrics

Gate dielectric	Dielectric constant	Energy bandgap	Conduction band offset	Valence band
Material	(k)	Eg (eV)	ΔEc (eV)	offset ∆Ec(eV)
SiO	3.9	9	3.5	4.4
Al ₂ O ₃	8	8.8	3	4.7
TiO ₂	80	3.5	1.1	1.8
HfO ₂	25	5.8	1.4	3.3

- Dielectrics play an increasing role also for new fundtionalities
- HfO₂ has a reasonable high k-value and a large enough bandgap
- HfO₂ is thermally stable on silicon
- HfO₂ has an interesting polymorphism

G. D. Wilk and R. M. Wallace, APL 1999

a tu dresden company

Transistor Gate Oxide

Transistor Gate Oxide

Gate oxide thickness scaling and gate leakage current

SiO₂ reached its scaling limit at 65nm/40nm due to excessive leakage
HfO₂ allows for a thicker layer getting out of the tunneling regime again

Transistor Gate Oxide

TECHNISCHE UNIVERSITÄT

DRESDEN

Changing the gate oxide of the transistor was like an open heart surgery!

- Together with the HfO₂ also metal gates were introduced
- While SiO₂ is thermally grown HfO₂ is deposited (e.g. by ALD) and therefore can be applied to different channel materials as well

RRAM / Memristor

RRAM / Memristor

Switching curves of HfO₂ based RRAM / Memristor

B. Max et al., APL 2018

Switching mechanism of VCM Memristor

Commercial RRAM devices

ReRAM Tech/Foundry	Fujitsu 40 nm eReRAM	TSMC 40 nm eReRAM	TSMC 22 nm eReRAM
Product Examples	Fujitsu MB85AS12MTPW- EAERE1	STMicroelectronics STWLC38JRM Wireless Power Receiver	Nordic nRF54L15 Bluetooth 5.4 SoC (Fanstel EV-BM15 Evaluation Kit)
Foundry CMOS Platform	Fujitsu (UMC) 40 nm	TSMC 40BCD	TSMC 22ULL
Die ID	Fujitsu MB85AS12MT	STMicroelectronics US0BAC	Nordic TMRC83
Die Size (Seal)	5.668 mm ²	6.716 mm ²	5.123 mm ²
ReRAM Memory / Die	12 Mb	256 Kb	12 Mb
Cell Size	0.0625 µm ²	0.0849 µm ²	0.0432 µm²
Pitch (WL/BL) measured	167 nm / 250 nm	162 nm / 262 nm	116 nm / 186 nm
ReRAM Location	on M2	on M3	on M3
Capping Layer	ΤαΟ	SICN/SION/TOO	SICN/SION
Top Electrode	ToN/Ir	ToN	TiN / TaN
ReRAM Materials	Ta0	HfO ten	HIO
Bottom Electrode	TaN TaN	Ru / TaN	Ru / TaN
# Metals	6 (5Cu+1Al)	7 (6Cu+1Al)	9 (8Cu + 1Al)
Cell Gate Process	NiSi/Poly-Si Gate	NiSi/Poly-Si Gate	HKMG_Gate Last

Tech Insigths 2024

RRAM / Memristor

Infineon 28nm RRAM demonstrator

28nm RRAM retention

Infineon press release on RRAM for automotive

Infineon and TSMC to introduce RRAM technology for automotive AURIX™ TC4x product family

Nov 25, 2022 | Market News

f in X

Munich, Germany – 25 November, 2022 – Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) and TSMC today announced the companies are preparing to introduce TSMC's Resistive RAM (RRAM) Non-Volatile Memory (NVM) technology into Infineon's next generation AURIX[™] microcontrollers (MCU).

28nm RRAM cell distribution during cycling

TECHNISCHE UNIVERSITÄT

DRESDEN

C. Peters et.al., IMW 2022

Ferroelectric hafnium oxide is the biggest semiconductor innovation from Germany from the last decades

Victor Zhirnov, SRC

UNIVERSITÄT

- Ferroelectrics have two stable polarization states that can be switched by applying an electric field → no inefficiency during writing → lowest write energy of known nonvolatile concepts
- Ferroelectricity inHfO2 solves the integration problems of complex ferroelectric oxides
- The effect was discovered in 2006 at Qimonda
- Basic patent applications have been acquired by NaMLab and licensed to FMC

Readout by switched charge:

FeRAM (DRAM like) channel: FeFET (Flash like) (RRAM like) Writing "1" Writing "0" Ferroelectric Ferroelectric Reading "1" Reading MFMIS Polarization (switching) MFS BEOL Electrode1 Electrode1 ಗ Reading "0" (non-switching) ΰl U_{C^+} Voltage L Time t HKMG nEE FeFF1 FeFET Poly-Si TiN Si:HfO HKMG pFE SION (IF) Ferro-HK TiN E. Y. Tsymbal and H. Kohlstedt, Science 2006 J. Okuno et al., VLSI 2020, IEDM 2023 B. Max et al., JEDS 2019 H. Mulasomanovic et al., Nanotechnology 2021 N. Ramaswamy et al., IEDM 2023

> TECHNISCHE UNIVERSITÄT

DRESDEN

Readout by coupling to transistor

- Ferroelectric materials enable three fundamentally different types of memory devices
- New possibilities for in-memory computing and neuromorphic computing

Readout by resistance change: FTJ

Realization of neuromorphic primitives using ferroelectric devices

TECHNISCHE UNIVERSITÄT

- For neuromorphic computing neurons and synapses era required
- Both FeFETs and FTJs cam be used to realize neurotic and synaptic functions

Antiferroelectric Hysteresis without (a) and with (b) internal bias field

Antiferroelectric Hysteresis without (left) and with (right) internal bias field after poling

Pyroelectric coefficient of symmetric and unsymmetric samples

Current Density (A cm⁻²)

(d) Pyro On State

^{3V} Time

Voltage

1.5 3.0 Voltage (V)

Polarization (µC cm⁻²)

(c) Pyro Off State

Time

Voltage

3V

1.5 3.0 Voltage (V)

Hf_{0.13}Zr_{0.87}O₂

t-phase o-phase

1 Cycle
10⁴ Cycles

-10¹⁰ Cycles

TECHNISCHE UNIVERSITÄT

DRESDEN

P

Cycles 20

Antiferroelectric hysteresis can be shifted to show a window at 0V

He shifted hysteresis can be switched between a polar and a nonpolar state

Pyroelectric response can be switches on and off accordingly

P.D. Lomenzo et al., Transducerss 2023	0
P.D. Lomenzo et al., IEEE Sensors 2024	1

To be continued...

Thank you

Thanks to all members of the NaMLab and TU Dresden team as well as all cooperation partners for their dedicated work and support!

Parts of this work was financially supported by the European Fund for Regional Development EFRD, Europe supports Saxony, and by funds released by the delegates of the Saxon State Parliament

